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ABSTRACT

We present a binary array encoding (location arrays) of
the nodes in a spatial partition tree representing spaces of
dimension k. This framework facilitates tree traversal for
optimising access speed, and also supports simplified
calculation of the neighbourhood of a subinterval of a
particular partition. After defining the encoding we
present a neighbour determination algorithm which
extends work carried out by Samet [1] [2] and others on
quadtrees. The primary extension is that the encoding and
the neighbour determination algorithm extend to arbitrary
dimensions beyond the 2-d quadtree case.
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1. INTRODUCTION'

Quadtrees represent the primordial hierarchical spatial
data structure, whose common salient feature is that of
recursive decomposition of 2-d space. Quadtree types can
be differentiated by the following characteristics:

1. The type of data used for its representation
2. The principle guiding the process of partitioning
3. The resolution (variable or not).

This data structure may be used for representing and
handling point, curve, region and volume data.
Decomposition of space can be regular at all the levels of
the quadtree or non-regular, guided by the entry of the
data to represent. The resolution of the decomposition (the
number of times that subdivision is applied) can be set
beforehand or can be guided for the properties of the input
data. Depending on the specific application also a
distinction can be made whether or not the structure is to
define the border of a region, in the case of curves or

' The majority of this introductory scction was adapted from Samet [1]

[2].

surfaces, or if it is used to define its interior in the case of
areas and volumes.

One of the principal variants of the quadtree data structure
is the region quadtree, so much so that Samet [1] uses the
terms synonymously. As an example we present the
region in figure 1 that initially we have represented like a
structure of a binary array of 8 x 8 where the value 1
represents a pixel inside the region to represent and 0 if
the pixel is found outside the region.

In the corresponding tree structure in figure 1, the root
node corresponds to the complete array. Each son node
represents a quadrant (labelled NW, NE, SW, SE) of the
region represented by the node. The terminal nodes
correspond to the blocks of the array in which it is no
longer necessary to continue subdividing. A terminal node
is represented in white or in black depending on whether
its corresponding block is completely located inside the
area to represent (all the elements of the array in this
block contain the label “1”) or that block is found
completely outside the region of interest (all the elements
of the array belonging to that block are labelled with “0”).

These same spatial partitioning concepts extend to the
third dimension in the representation of solids with
octrees [3], although the encoding of blocks instead of
quadrants becomes more complicated. In this paper we
refer to spatial partition trees, in general, even though our
initial examples treat the common 2-dimensional case
using quadtrees. This is because the method and algorithm
proposed here does not restrict spatial partitioning to 2-d
but rather is extensible to spatial partitioning in arbitrary
dimensions

2. MULTIRESOLUTION VISUALIZATION

Let us look at an application case where neighborhood
calculation using a quadtree structure is a crucial element
in interactive terrain visualization. For this application we
propose to optimize the visualizatin of an extensive
Digital Terrain Model (DTM) utilizing management of
levels of detail (LOD), that is, multirresolution.
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Figure 1. Example of quadtree (a) region, (b) structure of binary array, (c) maximum area blocks with constant value, (d) quadtree repres entation.

With this goal we define a process which renders to the
screen relevant information, that is, only the information
which might be appreciated from the viewpoint of the
user. The data structure considered to manage the MDT
with multiple levels of detail is the quadtree. In the
quadtree nodes we store the elevation values which
constitute the MDT as a regular grid with different levels
of resolution, where each level of the tree corresponds to a
level of resolution of the terrain.

In order to visualize the terrain, given a particular
viewpoint, we traverse the quadtree and select the
different levels of resolution represented by different
levels in the tree. For the selection of nodes in the tree we
use as main criterion the distance to the viewpoint, along
with terrain roughness criteria. To insure against union of
intervals with levels of resolution greater than 1, we run a
balancing procedure over the pruned tree. Obtaining
smaller regions after the pruning of larger adjacent
regions, causes discontinuities (gaps) in the graphic
representation of the DTM which cannot easily be
corrected unless the difference in levels of resolution is no
greater than one, see figure 2, in which case we make the
correction interpolating the elevation of point b, taken
from the region with higher resolution, which provoked
the discontinuity, to the segment ac of the neighbouring
region with lower resolution. For this process, therefore, it

is necessary to calculate the intervals which are
neighbouring a given interval. Analogous to the multi-
resolution management, mentioned for the simplification
of terrain geometry, it is also necessary to manage the
simplification of the texture which overlays that

geometry.
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Figure 2. The union of differing levels of detail (LOD) here provokes a
discontinuity in b: perspective view of the different layers utilized for
generating the terrain.
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3. BINARY ENCODING OF PARTITIONS

Frequently GIS related operations will require rapid
access to a specific node in the tree. This normally
requires traversal from root node downward through the
tree, passing from node to node depending on the area
representing the quadrant in question; t_his in tum
supposes that position information is carried for each
node. Normally quadtree quadrants are indexed according
to a hierarchical base-4 ordering such as that proposed by
Morton ( the Z order in figure 1d). While this ordering
simplifies operations in 2-d space and also facilitates
human description in terms of four cardinal directions, a
simpler referencing method is desirable as dimension
increases. Here we describe such a method.

To increase access simplicity it is possible to apply binary
encoding [4] to nodes so that these codes determine the
traversal path down the tree. Rather than suppose four
cardinal directions we encode each dimension with a 1-bit
coordinate, describing the direction as positive or negative
with respect to a given reference system. In particular, in
two dimensions the positive directions --up and to the
right (or East)-- are represented by a 1, while the negative
directions -—-down and left-- are represented by 0.
Consider the example in figure 3, where the
“northwest”’16 quadrant at level 1 is assigned a 0
(negative direction) in the x1 dimension and a 1 (positive
direction) in the x2 dimension. In this 2-d case the
assumed reference system has its origin in the central
point of the area where the quadrants meet. The example
in figure 4 expands on this binary encoding, showing the
notation to three levels.

4 xz

Figure 3. Binary array encoding in the 2-d case.

" While it is all too tempting to use cardinal references, we again
underscore that the positive/negative direction notation applies beyond
the 2-d case equally to all dimensions.
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4. BINARY LOCATION ARRAYS

Taking into consideration the binary encoding of each
dimension we define, as shown in figure 4, an array
representation of each subset region which communicates
both the location in the tree structure and, implicitly, the
path to reach the node associated with that region.

The location array associated with a given node (here
quadrant) is defined as the array of the father node, then
adding on the right a new column vector with its own
encoding according to the system in figure 3. The 3rd
level node highlighted in figure 4 is thus represented by
the 1,1 of the grandfather, the 1,0 of the father and then
adding the 1,1 for its own level. Figure 5 shows additional
examples to help clarify the encoding proposed. The
location array representation of the shaded regions in
figure 5 (four levels in 2-d space) would be the following:
1

of)o

[0 0 00
C= s H=
01 0 0

Encoding higher dimensions follows the same principle
described above. For example the following array P
shows 5 levels of nodes (columns) in 4-d space (rows).

0
1
1
1

(S S S w—

] 0]
1 1
1 0
0 1]

[0
0
1

0

Because the location of the quadrant'’ (node) is defined
by this simple binary location array, in section 6 we
describe a sort of bit shifting on these arrays for simple
neighbour calculation in any arbitrary dimension.

'” Here the use of the term quadrant re fers to any interval of the spatial
partition, at any dimension, and associated in the tree as a node.



5. MULTIDIMENSIONAL NEIGHBOUR
CALCULATION

To achieve maximum data access efficiency and
simplicity, necessary for applications such as interactive
terrain visualization, it is useful to be able to reason about
neighbour locations in the tree, identifying all possible
neighbours of each node. These neighbourhood references
are useful for tasks such as database paging or for
adjusting resolution in a geometric model during an
interactive flight over terrain [5] [6] [7]. If the terrain
model includes multiple levels of resolution as a function
of attributes such as distance to the viewer, then for each
frame it would be necessary to recalculate the spatial
partition tree and the neighbour relations of each node
because quadrants of distinct levels of decomposition can
cause discontinuities (gaps) which must be corrected by
adjustment to the lower resolution. Because these
applications will need to continuously recalculate these
neighbour relations, it is essential that the algorithm for
doing so deal efficiently with neighbours at multiple
resolutions.

As a solution to clarify and optimise neighbour
identification, we utilize the location array described
above, in a simple algorithm of linear computational cost
with respect to the depth of the tree.

To calculate the neighbour of E (in figure 5) in the
positive direction at dimension | and at the same level of
resolution (that is to say, quadrant of equal size or node at
the same level), we begin with the location array of E and
we visit each element, indicated with a dot, in the top row
from right to left. Alternating the bits as we go along the
first 1 becomes a 0, the second 1 a 0, the third also a 0,
then the 0 a 1. When we negate a 0 and it switches to 1, at
any point in the row, the process stops and the resulting
location array describes the neighbour found, in this case
F.

0111 0110/ |0100
E= = "
0101 0101 0101

0 00O 1 000
— = =
01 01 [0 1 0 I]

Now, if we continue applying the same algorithm we may
calculate at the same level of resolution the neighbour of
E in the negative direction in the second dimension
(“down”), producing the location array which represents
region G (see figure 5). This time we have alternated the
bits in the second row (representing the second
dimension), until a 0 is obtained, at the first move in this
case.
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0111 011 1
E= . = =G

01 01 0100
In general terms, then, we can state that in order to search
for a neighbour in any positive direction, the stop
condition in the bit shifting is the negation of any 0 to a 1.

Equally then, to search for a neighbour in any negative
direction the stop condition is the negation of any I to a 0.

Algorithm 1a (Neighbour identification in direction +x')

1.- First element processed: last element of the row i,
A(i,) in the location array.

2.- IF the processed element is a 0, we negate this
element and the process stops having encountered
a 1. The resultant array is the location associated
with the neighbouring node in direction x'.

3.- ELSE the processed element negates to a 0 and repeat
step 2 with the next element to the left of that row.

For the case of a neighbouring node in the opposite
(negative) direction, the algorithm would be modified as
follows.

Algorithm 1b (Neighbour identification in direction -x')

1.- First element processed: last element of the row i,
A(iy) in the location array.

2.- IF the processed element is a 1, we negate this
element and the process stops having encountered
a 0. The resultant array is the location associated
with the neighbouring node in direction x'.

3.- ELSE the processed element negates to a 1 and repeat
step 2 with the next element to the left of that row.

The principal advantages of this neighbour calculation
algorithm are its generality with respect to spatial
dimensions and its simplicity. An alternate representation
of the algorithm (for either direction) is the given
Calculate Neighbour algorithm.

6. THE MULTIRESOLUTION CASE

As stated earlier, applications such as real-time terrain
generation and visualization depend on the optimal
determination of multiple levels of resolution for any
particular view [6], [7], [8], [9], [10]. Let us now
demonstrate a method for exploiting the location array
notation described above, to determine the neighbours of
X (in figure 6) at multiple levels of resolution.

Algorithm CalculateNeighbour (A[i][j], * € »)
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interest, in direction ey, where r is the level of resolution.

Input. Location array A[i][j] of the region quadtree of

Output. The array of the neighbour encountered in

direction e
1.- if (ex >0) then
2.- while (A[k][xr]l==1)]|] (x==0)
3.- Alk] [r] <-not (A[K][r]));:
4.- r<-r-1;

A[k] [r] <-not(A[k][x]):

else
while (A[k][x]==0) || (r==0)

A[k)[r) <-not(A[k])[r];
r<-r-1;

10.- A[k][x] <-not(A[k][x]);
11.-return A

oo Jdoawnm
L . " »
| I O N B |

The array representation of the shaded regions in figure 6
would be the following:

7 0111
o100
A=0111;B=0111
0101 0 011
0110
fie ;D=1000
0100 0100

(1 0 0 01 1]
G = 5 F=
010 001

1 0 0 1 1
H= ;E: ;I:
0 1 00 0

We first calculate for the first dimension the same-
resolution neighbour of region X, in the positive
direction, yielding D as this “eastern neighbour.

X=01]1:>0110
0100 0100
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0100 0 000
= =
0100 0100

1 00O
=5 =D
[0100]

In the next step we identify all sub-arrays which
represent neighbouring regions at lower dimensions. This
is accomplished merely by eliminating the final column
on the right side. The number of columns remaining
informs of the level of resolution of each neighbouring
region. In this case we obtain the four arrays associated
with the neighbouring regions of X in the positive
direction at the first dimension: D at the same resolution
(4th level), G at the 3rd level, H at the 2nd level and
finally I at the 1st level (or entire quadrant).

1 000 1 00
=D; =G
[0 1 0 0} [0 1 0:|
1 0 1
=H;| |=1
o

Applying again the algorithm in the first dimension we
calculate the neighbours of region X in the negative
direction:

0111 0110
X = = — C
0100 0100
We obtain in the first step, the array characterizing the
only neighbour of G in the negative direction. Repeating

the process for the second dimension (the bottom row),
in the positive direction, we obtain:

0111 0111
X_—. — =A
0100 0101

and for the neighbours in the negative direction:

0111 0111
X: o = .
0100 0101



0111 0111
— . = =B
[Olll:l [0011]
Therefore, we have determined in three steps that B is the
neighbour of X at the same resolution and then,
independent of the resolution, that X has three
neighbouring regions which we deduced from the
original array, as follows: B at the 4th level, F at the 3rd
level and E at the 2nd level. The objective region X has

no neighbour at the Ist level of resolution in this negative
direction.

0 1 11
=B
_0011}
[0 1 1 0 1
=F =F
0 0 1 00

Although beyond the third dimension we cannot easily
visualize geometrically the indexing concepts described
here, from a logical point of view we can demonstrate
how the method applies equally well in k-dimensions.
This in contrast to traditional quadrant notation following
cardinal directions which are restricted to the 2-d plane.

To illustrate this point we will calculate, in a 4-d space
(using the array P from section 4), the neighbours in the
positive direction and in the 4th dimension, and
additionally at all levels of resolution.

O = O O
— e
— et et ek

O e e
_—0 = O

We apply the neighbour algorithm described earlier:

01 010 [01010
01111 01111
P= '

11110 11110
0101 1] [01010]
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- -

0101 0] [01 010
0111 1] (01111
it ol 11110
01000 (01100

As is illustrated above, the process stops when a 0 to 1
bit shift occurs. We then determine using the method
described earlier, that there exist three regions
neighbouring P at 3 levels of resolution, described by the
following arrays:

(01 01 0
01111
}J;=

11110
01100

(0 1 0 1] (0 1 0]
011 1 011
P = and P, =
1111 111
011 0 0 1 1]

7. MULTIPLE NEIGHBORHOODS

Based on the neighbourhood algorithm and the location
matrix notation of an interval I, we have seen how to
calculate the location matrix of the neighbours of I at the
same level of resolution. Based on that matrix we have
also seen how to determine all other possible neighbours
at lower resolution than I for a given quadtree partition.
We now complete this section with the determination of
the neighbours of I at higher resolution, which implies
necessarily multiple vecinity in the same dimension. To
illustrate this point we begin with the following quadtree
partition, in figure 7.

We propose that the calculus of the neighbours of inten{al
X in the positive direction and in the second spatial

dimension, as seen in figure 7, results in the intervals A, B
and C, whose associated location matrices are:

1 0 1 0 00
R = s A=
00 0100

1 0 01 1 0 1
B: ;C:
0100 010

On the basis of the location matrix defining the intervz}l.X,
we calculate the neighbouring interval in the positive
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direction of the second dimension and at the same level of
resolution as l.

Once the location matrix of the neighbour interval at same
resolution is obtained, we verify its existence in the
quadtree to determine if it is a terminal node or, on the
contrary, possess son nodes. For the terminal node case,
the process concludes obtaining the location matrix of the

1
X=
E

0
0

neighbour of X in the direction and dimension desired.
For the case of son nodes, we repeat the process for only
those sons in the opposite direction of the dimension of
interest. Below we show how to calculate neighbour
location matrices, using the tree structure navigation
described.

1 0
= 0 1 Non-terminal node

,/\

Non-terminal
node

/

1 0 0]_[0o] [t 000
e |= = 4
01 0] |o] o100

Terminal node

1

o 1Jolol s 7 o

Terminal node

R

Terminal node

Figure 8. Calculus of the neighbours of X at higher resoluti on in the second dimension and in the positive direction

For the case of neighbours of X in the negative direction
and the first dimension, we would derive an analogue
process:

Therefore the terminal nodes represent the neighbours of
interval X at equal or higher resolution. For the case of
the other two directions which for the moment we have
not considered, we show how we would arrive at singular
cases. In the first place let us calculate the neighbours of
X in the negative direction of the second dimension.

1 0
X= s =% l b = L

0 0 0 1 1 1
As we did not encounter any unitary (one) value, we
deduce that the interval X is on the border for the negative
direction at the second dimension, and therefore has no
neighbours in this partition. For the case of neighbours in
the positive direction of the first dimension:

X

{1 o
00
194

in which being a terminal node, concludes the defined
process and thus we deduce that it is the only neighbour
of X in the positive direction of the first dimension of
equal or greater resolution. We conclude the calculation
of neighbours of X at level of detail equal or less than X,
identifying as neighbours all those terminal nodes
obtained in the trees created. We are left with the location
matrices obtained as neighbours of X in the positive
direction of the second dimension, those corresponding to

the matrices:
(1 0 1 1 000
‘ .=_C; = A
0 1 0] [0 1 0 0]
(1 0 0 1
=B
0 1 0 0]

and for the negative direction of the first dimension

0 1 1 0111
=D; =F
|:0 0 0j| I:O 0 1 O:I



0 1 11
=F
0 011
as may be verified in the figure 7, where we have labelled
the intervals which are neighbours of X.

8. COMPLEXITY EVALUATION

Finally, we provide a proposition in order to define the
complexity of the neighbour calculation algorithm
described in this paper.

Proposition

inen that T is a quadtree of depth h, the neighbour of a
given node n in a particular direction can be encountered
at a maximum cost of O(h).

Demonstration

In the best case, in which a neighbour in a given
direction has the same father in the tree, the
computational cost will be of one comparison, such as in
the case of E, G in figure 5.

In the worst case, that of E, F in figure 5, according to
the algorithm presented here the number of operations
(comparison/assignment) will be at maximum that of the
level of resolution of the region considered, and therefore
corresponding at maximum to the depth of the tree.

9. CONCLUSIONS AND FUTURE WORK

We have presented a binary encoding notation for
representing spatial partitions, and therefore have
introduced the concept binary location arrays. Secondly,
we presented an algorithm for exploiting this notation for
the simplified calculation of neighbours of any region, in
arbitrary dimensions. This notation provides substantial
generality over current quadtree notations which do not
extend well into higher dimensions. Thirdly, we
demonstrated how the neighbour calculation algorithm
extends to determine neighbours at any level of
resolution.

Future work may include application of the algorithm to
interactive terrain visualization and other potentially
interesting applications, and extensions for other data
structures.
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12. ANNEX OF FIGURES
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Figure 4. Binary location arrays of a quadtree to the 3rd level
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Figure 5. Region quadtree example
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Figure 6. Study case of neighbours of X at several levels of resolution

Figure 7. Partition used for calculus of ne ighbours of interval X in the
positive direction of the second spatia | dimension. The result should be
A, B and C, each a different (lower) levels of resolution.



